Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Int J Environ Sci Technol (Tehran) ; : 1-16, 2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-20235756

ABSTRACT

This work aims to quantify potential pollution level changes in an urban environment (Madrid city, Spain) located in South Europe due to the lockdown measures for preventing the SARS-CoV-2 transmission. Polluting 11 species commonly monitored in urban zones were attended. Except for O3, a prompt target pollutant levels abatement was reached, intensely when implanted stricter measures and moderately along those measures' relaxing period. In the case of TH and CH4, it is evidenced a progressive diminution over the lockdown period. While the highest decreasing average changes relapsed on NOx (NO2: - 40.0% and NO: - 33.3%) and VOCs (C7H8: - 36.3% and C6H6: - 32.8%), followed by SO2 (- 27.0%), PM10 (- 19.7%), CO (- 16.6%), CH4 (- 14.7%), TH (- 11.6%) and PM2.5 (- 10.1%), the O3 level slightly raised 0.4%. These changes were consistently dependent on the measurement station location, emphasizing urban background zones for SO2, CO, C6H6, C7H8, TH and CH4, suburban zones for PM2.5 and O3, urban traffic sites for NO and PM10, and keeping variations reasonably similar at all the stations in the case of NO2. Those pollution changes were not translated in variations on geospatial pattern, except for NO, O3 and SO2. Although the researched urban atmosphere improvement was not attributable to meteorological conditions' variations, it was in line with the decline in traffic intensity. The evidenced outcomes might offer valuable clues to air quality managers in urban environments regarding decision-making in favor of applying punctual severe measures for quickly and considerably relieving polluting high load occurred in urban environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s13762-022-04464-6.

2.
International journal of environmental science and technology : IJEST ; : 1-16, 2022.
Article in English | EuropePMC | ID: covidwho-1998757

ABSTRACT

This work aims to quantify potential pollution level changes in an urban environment (Madrid city, Spain) located in South Europe due to the lockdown measures for preventing the SARS-CoV-2 transmission. Polluting 11 species commonly monitored in urban zones were attended. Except for O3, a prompt target pollutant levels abatement was reached, intensely when implanted stricter measures and moderately along those measures' relaxing period. In the case of TH and CH4, it is evidenced a progressive diminution over the lockdown period. While the highest decreasing average changes relapsed on NOx (NO2: − 40.0% and NO: − 33.3%) and VOCs (C7H8: − 36.3% and C6H6: − 32.8%), followed by SO2 (− 27.0%), PM10 (− 19.7%), CO (− 16.6%), CH4 (− 14.7%), TH (− 11.6%) and PM2.5 (− 10.1%), the O3 level slightly raised 0.4%. These changes were consistently dependent on the measurement station location, emphasizing urban background zones for SO2, CO, C6H6, C7H8, TH and CH4, suburban zones for PM2.5 and O3, urban traffic sites for NO and PM10, and keeping variations reasonably similar at all the stations in the case of NO2. Those pollution changes were not translated in variations on geospatial pattern, except for NO, O3 and SO2. Although the researched urban atmosphere improvement was not attributable to meteorological conditions' variations, it was in line with the decline in traffic intensity. The evidenced outcomes might offer valuable clues to air quality managers in urban environments regarding decision-making in favor of applying punctual severe measures for quickly and considerably relieving polluting high load occurred in urban environments. Supplementary Information The online version contains supplementary material available at 10.1007/s13762-022-04464-6.

SELECTION OF CITATIONS
SEARCH DETAIL